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Abstract-By the method of averaging over the ensemble of turbulent flow realizations, the averaged 
motion and mass balance equations for a solid phase and a flow as a whole are derived. Closed expressions 
for the second single-point moments of fluctuations of the solid and carrier characteristics are obtained in 
terms of correlations of the carrier phase velocity fluctuations in a non-homogeneous turbulent flow, Based 
on these expressions, a set of equations is written for the second single-point moments of the carrier phase 
velocity fluctuations in the presence of particles. Hydrodyn~c analysis is presented for turbulent gas 
suspension flows in tubes. Comparison with experimental data shows a satisfactory description of the 

processes of momentum transfer by a particle-laden flow. 

1. INTRODUCTION 

A TWO-PHASE flow involving a solid dispersed phase 
is predominantly turbulent. The explanation lies in the 
fact that a laminar flow has a very limited suspension- 
carrying capacity and, being laden with particles, it 
exhibits a very early transition to turbulent flow 11. 
21. The theory of the turbulent disperse flow has been 
worked out to a much lesser extent than the theory of 
a turbulent single-phase flow. Full analysis of pub- 
lications concerned with the methods for describing 
and predicting turbulent disperse flows is not within 
the scope of this paper ; there are a variety of mono- 
graphs which deal with two-phase turbulent flows and 
survey relevant studies [3-71. 

The particles of the admixture in a turbulent flow 
can be conventionally divided into large and small 
depending on their behaviour in a turbulent flow. 
Large particles, the dynamic relaxation time of which 
considerably exceeds the time scale of turbulence, are 
practically not entrained into the carrier phase pul- 
sating motion. Characteristic for these particles are 
the effects of the velocity slip of phases, collision of 
particles with the channel walls and with each other ; 
the motion of large particles is influenced by gravi- 
tation and by the Magnus force arising due to the 
rotation of particles in shear flow. Large particles can 
influence the pulsating structure of flow in the cases of 
a perceptible velocity slip of phases, formation tur- 
bulent wake behind the particles, destruction of a 
viscous sublayer, etc. In the case of low averaged 
velocity slips of phases (e.g. in long tubes in the 
absence of gravity), the effect of large particles on the 
flow characteristics is insignificant, since they are not 
involved in pulsating motion, cannot therefore exert 
an inverse effect upon the carrier phase and, conse- 
quently, upon the characteristics of the flow as a 
whole. The coarseness of the admixture particles is 

determined by their relative size, by the material den- 
sity ratio of the particles and carrier phase and also 
by the Reynolds number of the main stream [3]. 

The behaviour of small particles, the dynamic relax- 
ation time of which is comparable with, or smaller 
than, the life of energy-carrying moles (turbulent time 
scale), depends on the intensity of the pulsating 
motion of the carrier phase and, in turn, dete~nes 
the influence of the admixture on the main stream 
characteristics. In the case of small particles, the aver- 
aged velocity slip of phases is virtually absent and, 
therefore, the hydrodynamics and heat transfer of a 
disperse flow can be described within the framework 
of sin~~vel~ty appro~mation. The factors govem- 
ing the behaviour of large particles are insi~ifi~nt 
for the analysis of the behaviour of small particles. 
Important for the latter are the effects associated with 
the interphase interaction in pulsating slip of phase 
and with the nonuniformity of the field of the tur- 
bulent carrier phase fluctuations (turbulent migration 
[8, 9]), and also the turbulent diffusion of an admix- 
ture. In what follows the consideration will be restric- 
ted to the hydrodynamics of disperse flows with an 
admixture of small particles with low volume con- 
centration. 

The effect of particles on the intensity of momentum 
and heat transfer in a turbulent disperse flow is deter- 
mined by two factors : the degree with which the par- 
ticles are entrained into pulsating motion of the 
medium and the character of the inverse effect of the 
admixture on the carrier phase velocity fluctuations. 
The problem of determining the degree of the entrain- 
ment of particles into the turbulent flow pulsating 
motion, i.e. determining the correlation between vel- 
ocity fluctuations of the particles and carrier phase 
was the concern of a number of publications [3-7, 10, 
111. However, the relations obtained in these works 
for the particle velocity fluctuation correlation 
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NOMENCLATURE 

a particle radius Vi, (vi), ui actual, averaged and pulsating 
C, (C) actual and averaged volume velocities of solid phase, respectively 

concentrations of solid phase V 
Pk velocity of pth particles 

D, tensor of turbulent diffusion of & xk Cartesian coordinates 
admixture particles x, r longitudinal and radial coordinates of 

E turbulent energy of carrier phase, cylindrical coordinate system 
((ux’) + <a:> + (r&)/2 Y distance from tube wall normalized to 

B pulsating energy of carrier phase tube radius, 1 - r. 
normalized to average velocity of Greek symbols 
flow 6 Dirac delta function 

flj, F, two-time correlation functions of hk Kronecker delta 
velocity fluctuations of non-stationary &Yj term describing interphase interaction 
and stationary carrier phase flows in equation for second single-point 

f,, ,fu2,fu3,fu4 functions describing the effect moments of carrier phase velocity 
of particles on the intensity of carrier fluctuations 
phase turbulent fluctuations PI dynamic viscosity of the liquid phase, 

L spatial scale of turbulence PlVl 
N number of particles per flow volume VI kinematic viscosity of the carrier phase 
P, (P), p actual, averaged and pulsating v,!, 42 turbulent kinematic viscosities of 

pressure in liquid phase, respectively carrier and solid phases, respectively 
R channel radius 0 

V,1 turbulent kinematic viscosity of 
Re main stream Reynolds number, particle-free carrier phase 

2W&, 1;, L friction factor of gas suspension flow 
TE time macroscale of turbulence and single-phase gas flow, respectively 

r, time of interaction between particle and Pl,P2 density of carrier phase and particle 
turbulent mole material, respectively 

To characteristic time of change of L time of dynamic relaxation of particles, 
averaged quantities (2/9) WP,) (a2/YI) 

U,, (U,), ui actual, averaged and pulsating (4) mass concentration of admixture, 
velocities of carrier phase, respectively PzlP*(C) 

uln average velocity of carrier phase volume of particles, 4/3na3 
i7 averaged velocity of carrier phase i, volume of flow containing N particles 

normalized to average velocity of DU parameter of dynamic relaxation of 
flow particles, z,/TE. 

moments and expressed in terms of the medium vel- 
ocity fluctuation moments are valid only for steady- 
state homogeneous turbulence. 

The problem of the inverse influence of particles 
on the carrier phase velocity fluctuations was also 
discussed in many publications. Most of the inves- 
tigations revealed a reduction in the flow turbulence 
on introduction of fine particles. Thus, based on the 
energy or momentum balance between a turbulent 
mole and particles, the authors of refs. [ 12, 131 derived 
simple equations showing a decrease in the intensity 
of medium velocity fluctuations with an increase in 
the admixture weight concentration. In ref. [14], the 
reduction of the turbulent flow hydraulic resistance in 
the presence of particles is explained with the aid of a 
model based on complete suppression of vortices the 
scale of which is smaller than the size of particles. 
Additional dissipation of turbulence energy as a result 
of incomplete entrainment of particles in pulsating 
motion of the medium is determined in refs. [ 15, 161. 

The degree of reduction in the carrier phase fluc- 
tuation intensity owing to additional turbulent energy 
dissipation induced by pulsating slip is estimated in 
refs. [7, 171 on the basis of the turbulence energy 
balance equation. In contrast to refs. [7, 12-171, it is 
assumed in ref. [18] on the basis of the experimental 
data of ref. [19], that along with dissipation of tur- 
bulent energy, the particles contribute to the gen- 
eration of turbulence due to their entrainment into 
pulsating motion. The latter is also confirmed by 
investigations of the stability of laminar flows carrying 
solid disperse admixtures [2, 201 which reveal that 
particles not only lead to the degradation of high- 
frequency disturbances, but also cause the growth of 
low-frequency (most energy-intensive) impulses 
because of an increase in the origination of dis- 
turbances from averaged motion. Thus, the question 
of the effect of fine particles on the pulsating charac- 
teristics of a turbulent shear flow has not been 
resolved. 
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To calculate the hydrodynamics of disperse flows, 
various models of turbulent transfer are used within 
the framework of which the influence of particles on 
turbulence is taken into account, as, for instance, the 
Prandtl model in ref. [12] and different modifications 
of the van Driest models in refs. [7, 181. However, the 
most considerable promise is offered by models which 
are based on equations for second single-point 
moments of velocity fluctuations because they provide 
the possibility to most consecutively take into account 
the effect of particles on turbulence. This approach 
was used for the first time in ref. [21] to analyse the 
effect of heavy inertia-free particles on a horizontal 
turbulent flow. Subsequently the second moment 
equations were used to calculate a turbulent disperse 
flow in channels [17] and in jets [22, 231. However, 
the main attention in these studies was paid to the 
dissipative influence of a discrete admixture on tur- 
bulence. The authors of ref. [17] discarded the terms 
involving the solid phase velocity fluctuations, thus 
considerably overstating the additional liquid-phase 
turbulent energy dissipation due to pulsating slip, 
while the authors of refs. [22, 231 achieved closure 
through the set of equations for the second single- 
point moments of solid and carrier phase velocity 
fluctuations which were derived for single-phase 
steady-state turbulence. This solution of the closure 
problem does not take a full account of the influence 
of admixture on the pulsating structure of flow. 

In the present study, using the method of averaging 
over the ensemble of turbulent flow realizations, 
expressions for the second single-point moments of 
fluctuations of the solid and carrier phase charac- 
teristics in a non-uniform turbulent flow were found 
from the equation of motion of a single-solid particle. 
Based on these expressions, a set of equations was 
derived for the second single-point moments of the 
carrier phase velocity fluctuations in the presence of 
a particle to calculate the hydrodynamics of gas sus- 
pension flows in tubes. The calculations neglected a 
change in the space scale of the carrier phase tur- 
bulence in the presence of particles. The modelling of 
the discrete admixture effect on the spatial pulsatory 
structure of a carrying flow is the purpose of further 
investigations. 

2. AVERAGED MASS AND MOMENTUM BAL- 

ANCE EQUATIONS FOR THE SOLID PHASE AND 

GAS SUSPENSION FLOW AS A WHOLE 

The following restrictions are imposed on a two- 
phase system ‘gas-particles’: (1) the volume con- 
centration of the admixture is so insignificant that the 
collision of particles with each other may be 
neglected; (2) the discrete phase is represented by 
solid non-deformable equally sized particles ; (3) the 
Reynolds number based on the particle radius and 
flow fluctuational velocity is smaller than unity ; (4) 
the gravity force is ignored which is justifiable at flow 
velocities much in excess of the free-fall velocity of 

particles ; (5) the particles are assumed to be so small 
that the effects stemming from the rotation of particles 
could be neglected ; (6) the collisions of particles with 
the channel wall and with each other are not taken 
into account. 

Since the solid particles suspended in a turbulent 
gas flow are small (pZ >> pl, R/a - 103), it is possible 
to regard them as pin-point particles and to describe 
the distribution of particles in the flow volume by the 
function 

C(x, t) = ; f &x-R,(t)). (1) 
Np- 1 

The solid phase velocity in Euler’s notation is 

Vi(x, t)C(x~ r) = $ $ s(X-Rp(t))Vpi(t) (2) 
Np- L 

d%(t) 
dt 

= VJt). (3) 

Differentiating equation (1) with respect to time 
and using equations (2) and (3) gives the solid phase 
mass balance equation 

ac a 
at+axV”C=O. 

k 

In Stokes’ approximation, the equation of single 
particle motion is 

dVpi 1 
dt - z, (W&9(0,0 - 5,). (5) 

By imposing the approximation of point particles, 
the equation of motion for the carrier phase laden 
with particles can be written in the form 

au, au, i ap aw, 
x+&ax= ---+v, 

k pl axi axkaxk 

From the quantities that characterize the motion of 
the carrier phase, separate the averaged and fluc- 
tuational one (the averaging is carried out over the 
turbulent flow realizations) 

ui(x, t, = <“i(x, t)>+“j(x, t), C&(X, t)) = 0 

fY-% 0 = vcc t)> +A% 0, M-T 0) = 0. 

The averaging of equations (1) and (2) over the 
turbulent flow realizations yields the averaged volume 
concentration and velocity of the solid phase 

(C(X> 0) = 
( 

& 
P 
c, W-~,(t)) 

> 

(C(x,t)XVdx,t)) = ; t 6(x-R,(t))v,,(t) . 
Np- 1 > 
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The fluctuational solid phase velocity component is 
determined from the relation 

vl(x, t, = ( vi(x, f)> + Ui(x, l) 

so that the following equality is satisfied : 

(C(x, t)q(x, t)) = 0. (7) 

The averaging of equation (4) with regard for equa- 
tion (7) results in the solid phase mass balance equa- 
tion 

a(0 a -g- + &C>Wk> = 0. 
k 

(8) 

Similarly, equations (5), (7) and (8) yield the solid 
phase motion equation 

(0 
a( vi) a< Vi> 
at+wk)r 

k > 
= _(c>5g 

k 

- (Wk) ~+~(Cui)+~(<~i)-(vi)). (9) 
k 

The first term on the right-hand side of equation 
(9) accounts for the contribution of particles into the 
solid phase momentum transfer due to their entrain- 
ment into pulsating motion, which corresponds to the 
appearance of turbulent viscosity in this phase ; the 
second term determines the diffusion force arising due 
to the concentration gradient ; the last two terms relate 
directly to the interphase interaction. 

By averaging equation (6) and adding it to equation 
(9), the momentum balance equation for the flow as 
a whole is obtained as 

wn w-u p2 
,,+<cl,>,x+j$c> 

k 

a( vi) 
+(V,)r = --~ 

k 

+ c”iuk) + ~<c)(uivk) . 1 (lo) 
It is seen from equation (10) that the particles con- 

tribute not only to averaged convective transfer of 
momentum, but also to the turbulent stresses of the 
flow as a result of their entrainment into pulsating 
motion. 

3. EQUATIONS FOR THE SECOND MOMENTS 

OF VELOCITY FLUCTUATIONS OF THE CARRIER 

PHASE LADEN WITH PARTICLES 

Equations for the second single-point moments of 
the carrier phase velocity fluctuations in the presence 
of particles result from equation (6) and coincide 
with respective equations for a single-phase flow, 
except for the additional term which is associated with 
the interphase interaction and which has the form 

X d Vpi 
-p’(X’ t) + $&(X, t) 

I> 
. (11) 

Substituting the single particle motion equation (5) 
and equation (1 l), obtain after averaging 

EC = ; F [2(UiU,) - (UiVj) - (UjUi)] 
” 

+ E ~[(cui)(<uj)-(v,)) 

+<cu,>(<ui>-(V,)~l~ (12) 

Equation (12) contains the single-point correlations 
of solid and liquid phase velocity fluctuations and also 
the correlations of the carrier phase velocity fluc- 
tuations and of particle concentration. Moreover, the 
second moments of solid phase velocity fluctuations 
are incorporated in the motion equations for the solid 
phase and for the flow as a whole. Therefore, the 
objective arises to express the second single-point 
moments of the fluctuations of solid and carrier phase 
characteristics in a non-uniform turbulent flow in 
terms of the correlations of velocity fluctuations of 
the carrier phase alone. 

Assume that the intensity of the solid phase pul- 
sating motion is primarily determined by the force of 
resistance arising during the fluctuation slip of phases ; 
then the equation for solid phase velocity fluctuations 
will take the form 

aDi a(Vi) 
5 +cvk)$ +uk- 

k ax, 

+ ahvk - (wk)) 

axk 

= +I;,). (13) 

At a zero initial velocity of the particle, equation 
(13) can be presented in the integral form as 

[ 

a+, 4 
-r, <Vkk(X,S))---- 

axk 

+v (x sj a<I’;(x,s)) 
k > 

axk 

+ & L’;(& .+k(% d 
k 

- (Vi(X, +k(x, s)) II ds. (14) 

Calculate the second single-point moment of the 
solid and carrier phase velocity fluctuations. Mul- 
tiplying equation (14) by u,(x, t), averaging and 
employing the substitution of variables in the integral, 
obtain 
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Determine the correlation moment of the carrier 
phase velocity fluctuations 

(U& t-s)uj(x, t)) = &@-s/2, s) = FG(‘, s) 

s aFiy(L.9 
2 at z Fu(s)<ui(x, t)“j(x3 t>> 

-~F.(s)~(ui(x,r)uj(x,r)) (16) 

where F&Y) is the two-time correlation function of the 
carrier phase velocity fluctuations. The value of fij 
changes significantly when the first argument is 
changed by the value of the order of To, and the 
second argument is changed by the value of the order 
of TE, where T,, is the characteristic time for the vari- 
ation of averaged parameters, TE is the time macro- 
scale of turbulence (the life of an energy-carrying 
mole). It is assumed in what follows that TE cc To 
and, consequently, the first and second arguments in 
fi, are the slow and fast variables, respectively. It is 
this fact which allowed the restriction to the first term 
in the expansion of flj in the second argument (16). 

It follows from equation (15) that the ratio of the 
first term within braces to the terms describing con- 
vective and diffusive transfer [to the first and second 
bracketed terms in equation (15)] is proportional to 
Z./T,. Then, imposing the condition tU/To << 1 [and, 
consequently, considering the cases z,/TE = O(l)], it 
is possible to confine the discussion to the first terms 
in equations (16) and (15) when calculating the con- 
vective and diffusive terms between the brackets in 
equation (15). Relevant calculations in equation (15) 
yield a closed relation for the second single-point 
moment of solid and carrier phase velocity fluc- 
tuations accurate to the terms of the order of (r,/T,)’ 
expressed in terms of velocity fluctuation moments of 
the carrier phase alone 

(17) 

where the coefficients fu, and fuz characterize the 
degree with which the particles are entrained into 
pulsating motion. They are determined by the for- 
mulae 

fu, =krexp(-t)F&)dr 

,,=~%~exp(-~)g,,,. (18) 

Similarly, the second single-point moment of the 
discrete phase velocity fluctuations is expressed, 
accurate to the terms of order (z,/To)*, in terms of the 
carrier phase moments 

+ (u,uk) a( vi> + 

I axk (19) 

The first terms in expressions (17) and (19) describe 
the entrainment of particles into the pulsating motion 
of the carrier phase in a steady-state uniform turbulent 
flow [7, 10, 111 whereas the subsequent terms are 
linked with the nonuniformity and nonsteadiness of 
the turbulent flow. It follows from equations (17) and 
(19) for low-inertia particles (r, + 0) that (uivj) + 
(viuj) -+ (uiuj), i.e. the particle fluctuations coincide 
with the fluctuations of the carrier phase. For inertia 
particles (uiaj) -+ 0, but (u,vj) = O(r,/T,) because of 
the additional generation of solid phase fluctuations 
due to the nonuniformity of the carrying turbulent 
flow. 

With the single-point moments and two-time func- 
tions of the carrier phase velocity and temperature 
fluctuations being known, equations (17)-( 19) make it 
possible to calculate the second single-point moments 
that include discrete phase velocity and temperature 
fluctuations in a non-stationary non-uniform tur- 
bulent flow. 

Equations (15) and (16) yield an expression for the 
two-time correlation of the solid and carrier phase 
velocity fluctuations accurate to the terms of the order 
of 

exp s 
0 L 

(Ui(X, t)Uj(X? t+S)) = ~ 

L 

The solid phase motion equation (9) and expression 
(12) include the correlation between the solid phase 
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concentration and the liquid phase velocity iluc- 
tuations. To calculate this correlation, write the par- 
ticle concentration balance equation (4) in integral 
form, multiply it by U&C, t) and average over the 
ensemble of turb~ent realizations ; then, negl~ting 
the terms proportional to the second and high-order 
derivatives of the averaged concentration, obtain the 
following expression : 

=- (u,(x, t)Uk(x, s)) dSd<;t O). 
k 

With equation (20) taken into account, obtain 

(c(x, t)Ui(X, I)> = -LL3(Wk) p (21) 
k 

where 

Using equation (21), write down the solid phase 
motion equation (9) in the following form : 

where 

is the turbulent diffusion coefficient of admixture par- 
ticles. Taking into account the interphase interaction 
term in equation (12), in which the correlation 
moments can be found from formulae (17) and (21), 
the equations for the second single-point moments of 
the carrier phase velocity fluctuations in the presence 
of particles will have the form 

auj 
+dx, 

where 

(23) 

(24) 

As is seen from equation (23), the particles being 
entrained into the carrier phase pulsating motion con- 
tribute to the terms that determine the convective 
transfer and turbulent diffusion of liquid phase fluc- 
tuations and also the origination of fluctuations from 
the averaged motion ; moreover, new terms appear 
that describe variations in pulsating energy due to the 
admixture concentration gradient [the last but one 
term in equation (23)] and additional dissipation of 
the carrier phase pulsating energy by particles (the 
last term). 

In the case of inertia-free particles (z, + 0, fU, + 1, 
fuz + 1, fU4 + 0) equations (23) for particles of con- 
stant concentration transform into equations for the 
second single-point moments of the fluctuations of a 
single-phase liquid having the density p, (1 +pJ 
p,(C)). Inertia particles (r, > TE) are less entrained 
into pulsating motion cf., < 1, fUZ < 1, fU4 # 0) 
and, as a result, the carrier phase turbulent energy 
may decrease. Large particles (2. >> ;r,) are not en- 
trained into pulsating motion and therefore &i, fUZ, 

fu,=O. 

4. EQUATIONS FOR THE HYDRODYNAMICS OF 

TURBULENT GAS SUSPENSION FLOWS IN 

TUBES 

To calculate the functions that describe the degree 
of the entrainment of particles into the carrier phase 
pulsating motion, it is necessary to determine the two- 
time correlation function of the carrier phase velocity 
fluctuations. To simplify the subsequent calculations, 
assume the function F*(S) to have the following 
form : 

F,(s) = 
1, if O<.vSTT, 

0, if s > T, ’ 
(25) 

Here Tp is the time of particle interaction with the 
turbulent field which is shorter than the life of energy- 
carrying vortices (turbulence time scale) because of 
the averaged and pulsating slip of the phases. By 
neglecting a decrease in T, as compared with the life- 
time of a turbulence mole, it is possible to assume in 
what follows that Tp = TE. Thus, the main quantity 
which determines the degree of the entrainment of 
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FIG. 1. Entrainment and dissipation coefficients vs the 
dynamic inertia parameter : 1, equations (18) and (24) ; 2, 

(I+%)-’ [23]. 

particles into turbulent motion is the particle dynamic 
inertia parameter fi, = z,/T,. 

Equations (18), (21) and (25) give expressions for 
the functions that describe the effect of particles on 
the turbulent structure of the carrying flow 

fur = 1-exp(-l/R,) 

.L = 1-(1+VkJex~(--WJ 
fu3 = l/C&+1-exp(-l/R,) 

fu4 = exp(- WW%. (26) 

Figure 1 presents the coefficients of entrainment 
fu,, fuz and dissipation fu4 vs the inertia parameter 
R, plotted from formulae (26). It follows from these 
formulae that fu,, fu2 + 1 and fu4 + 0 when Q, + 0, 
because the inertia-free particles are fully entrained 
into pulsating motion; f.,, fu2, fu4 + 0 for Cl, + co, 
because large particles are not entrained into pulsating 
motion. Figure 1 also contains the relation for the 
dissipation coefficient fu4 = (1 +a,)-’ [7, 231 
obtained with the use of the correlation function 
F. = exp (-s/T=) which does not satisfy the condition 

(dF&)s = o = O-a fact which results in the condition 
fu4 + 0 to be also invalid for a, + 0 (of the inertia-free 
particles completely entrained into pulsating motion 
there should be no additional dissipation due to the 
pulsating slip of the energy-carrying moles of the car- 
rier and solid phases). On the contrary, the relation 
for the dissipation coefficient fu4 N R, for R, < 1 and 
fu4 N const. for a, > 1 [l l] tends to zero when R, + 
0, but it does not satisfy the limiting transition when 
R, + co (large particles are not entrained into pul- 
sating motion and, consequently, there should not be 
additional dissipation by them either). The dissipation 
coefficient fu4 determined from formula (26) attains 
the maximum value at f& = 1, i.e. the turbulent energy 
dissipation due to the interphase pulsating slip reaches 
the maximum when the times of the particle relaxation 
and energy-carrying mole life coincide. 

To describe the dissipation and transfer terms in 

equations (24) for the second single-point moments 
of velocity fluctuations of the particle-laden carrier 
phase, use is made of Rotta’s approximation hypoth- 
eses [25] 

The turbulence time scale (the lifetime of energy- 
carrying fluctuations) incorporated into the definition 
of the dynamic inertia parameter of particles is cal- 
culated from the formula TE = yL/E’12. The constant 
y is estimated from the condition of equality of the 
mole turbulent energy E to the turbulent dissipation of 
pulsating energy for the time T,, i.e. E = c~E”~/LT~. 
which results in y = l/cE. 

In ref. [26], a qualitative investigation is made into 
the effect of particles on the intensity of turbulent 
transfer of the gas suspension flow momentum. For 
large turbulent Reynolds numbers Re, = LE”‘/v, 
>> 1 an algebraic set of equations is obtained in a 

diffusion-free approximation for the second single- 
point moments of particle-laden carrier gas velocity 
fluctuations, which yielded the expressions for the 
turbulent energy and carrier phase shear stress in the 
form of modified Prandtl numbers. The analysis 
of these expressions shows that inertia particles 
(a, N 1) cause a decrease in both the intensity of 
the turbulent fluctuations of gas due to the forces 
of resistance in the pulsating slip of phases. As 
the dynamic inertia parameter of particles increases 
(Q, >> l), the effect of the admixture on the pulsating 
structure diminishes. With an increase in the weight 
concentration the low-inertia particles intensify the 
momentum turbulent transfer due to the participation 
of particles in the pulsating motion of the carrier 
phase and to the growth of the terms that describe the 
origination of gas turbulent fluctuations from aver- 
aged motion in the presence of particles. 

Numerical calculation of the hydrodynamics of gas 
suspension flows in circular tubes is carried out with 
coinciding averaged velocities of the solid and carrier 
phases for constant concentration of the admixture 
over the tube cross-section. Use is made of the 
momentum balance equation for gas suspension flow 
in the axial direction 

(28) 

and the balance equation for the carrier phase 
pulsating energy in which the following gradient 
representation is employed for the terms describing 
turbulent diffusion : 
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r 
[ 

v +CIE”2L(l+(4)f ) 
’ 2 1 I E 

“’ ar 

-(c~+,,,$)~ -c,~v,; = 0. (29) 

The turbulent viscosity of the solid phase is deter- 
mined from equation (19) in terms of the turbulent 
kinematic viscosity of the carrier phase as 

(0 v.> 
v - -A=vt,f;, 

QLL* +L,1 

‘2 - a(u) 2f 
UI 

xk,y 1+2<4)_Ll(k,Y) 1 I+fu2(4) (30) 

The turbulent viscosity of the liquid phase is deter- 
mined from the set of equations (23) in diffusion-free 
approximation with the use of Rotta’s relations (27) 

VII -=u,Re, 
VI 

The turbulent macroscale L is identified with the 
Nikuradze mixing length 

L = 0.14-0.08r2-0.06r4. 

Numerical values of the constants tl r, /.I, k,, cE and 
cE, are selected from the solution to the problem of 
a near-wall single-phase liquid flow [271: tl, = 0.51, 
/I = 14, k, = 1.16, cE= 0.13, cE, = 0.32. The bound- 
ary conditions for the set of equations (28)-(31) take 
the form 

E=(U)=O, if r=R; 

a(u) aE 
~ = - = 0, 

& ar 
if r = 0. (32) 

The set of equations (28)-(31) with boundary con- 
ditions (32) are solved numerically. 

5. CALCULATION RESULTS 

The admixture of solid particles considerably 
changes the intensity of the carrier phase pulsating 
motion. Figure 2 illustrates the distribution of the gas 
turbulent energy intensity. It is seen that the admix- 
ture of solid particles can both increase the intensity 
of gas turbulent fluctuations, because of the growth 
of fluctuations from the averaged motion when the 
particles become entrained into turbulent motion, and 
decrease the level of turbulent fluctuations of gas 
through the work done by the carrier phase to entrain 
the admixture mass into pulsating motion. The degree 
of the effect of particles on the gas fluctuation struc- 
ture depends nonmonotonously on the particle 
dynamic inertia parameter as is seen from Fig. 3 where 
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FIG. 2. Effect of particles on the pulsating energy of the 
carrying gas (Re = 5.3 x 104): 1, (q5) = 0; 2, (4) = 5, 
R/a = 30000; 3, (4) = 5, R/a = 5000; 4, (4) = 5, 

R/a = 3000; 5, (4) = 5, R/a = 1000. 

the distribution of the gas pulsating energy in the near- 
wall region is shown. A maximum reduction in the 
gas pulsating energy is achieved when the dynamic 
inertia parameter is about unity. The particle dynamic 
inertia parameter changes across the channel ; it 
attains its maximum near the channel wall where the 
frequency of turbulent fluctuations is a maximum. 
Closer to the flow core the dynamic inertia parameter 
decreases. It should be noted that when the admixture 
mass concentration increases, the carrier phase tur- 
bulent flow adjusts itself so as to diminish the effect 
of admixture on the fluctuation structure of the flow ; 
the dynamic inertia parameter of low-inertia particles 
(a, << 1) increases with the admixture concentration, 
decreasing the degree of the additional growth of fluc- 
tuations from averaged motion and increasing the 
pulsating slip of phases, while the inertia parameter 
of larger particles (a, > 1) decreases in a flow with a 
higher concentration of the admixture resulting in a 
smaller additional dissipation of the gas turbulent 

p ‘+ 

” “L 

IO' IO2 2 
Y 

‘+ 

FIG. 3. Effect of discrete phase on the fluctuation structure 
of gas near the wall (Re = 5.3 x 104). For notation, see 

Fig. 2. 
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v, 
FIG. 4. Variation of the admixture particle inertia parameter 
over the tube cross-section (Re = 5.3 x 104) : 1, (4) = 0, 
R/a= 10000; 2, (4) = 5, R/a= 10000; 3, (4) =0, 
R/u=5000; 4, (4)=5, R/0=5000; 5, (d>=O, 
R/a=3000; 6, (1$)=5, R/0=3000; 7, (4)=0, 

R/a = 1000; 8, (4) = 5, R/n = 1000. 

energy and in a more intensive generation of the car- 
rier phase fluctuations (Fig. 4). 

The turbulent viscosity of gas, just as its pulsating 
energy, depend on the mass concentration of the 
admixture. Low-inertia particles (CI, CC 1) increase the 
turbulent viscosity of gas. On the other hand, in the 
presence of inertia particles (a” > 1) a reduction in 
the carrier phase turbulent viscosity is observed 
((4) < 5), followed by an increase of turbulent vis- 
cosity with the admixture concentration (Fig. 5). The 
non-monotonous behaviour of v,, caused by the 
admixture mass concentration is supported by exper- 
imental data presented in ref. [3]. 

The particles exert an influence not only on the 
fluctuation structure of a flow, but also change the 
profile of the averaged velocity of the carrier phase 

FIG. 5. Effect of particles on the kinematic viscosity of gas 
(Re= 5.3x 10’): 1, R/a = 30000; 2, R/a= 5000; 3, 

R/a = 300; 4, R/a = 1600. 

FIG. 6. Effect of discrete phase on the gas averaged velocity 
profile (Re=5.3x104): 1, ($1)=0; 2, (c#J>=~, 
R/a = 30000; 3, R/a = 5000; 4, (4) = 3, R/a = 30000; 5, 

(4) = 3, R/a = 1000. 

(Fig. 6). Addition of fine particles flattens the profile 
of the gas averaged velocity. As the particle dynamic 
inertia parameter R, increases, the effect of particles 
on the averaged velocity profile diminishes and this is 
supported by experimental investigations of the gas 
averaged velocity profile in a gas suspension flow [28]. 

Figure 7 gives a comparison between experimental 
[19] and calculated relations for the hydraulic resist- 
ance of an air flow laden with zinc particles of different 
sizes. There is a good agreement between the exper- 
imental data and the predicted results, especially for 
fine particles. In the case of larger particles, there is 
no reduction in the hydraulic resistance with an 
increase in the admixture mass concentration. This 
discrepancy between the prediction and experiment 

o*e 
IO0 IO’ 

FIG. 7. Hydraulic resistance of gas suspension flow in a 
circular tube (Re = 5.3 x 10’) : 1, R/n = 30000; 2, ~. _~~. 

R/a = 5000; 3, R/a = 3400; 4, R/a = 17OO. 
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can be attributed to several reasons. First, the cal- 
culations were carried out for the particle con- 
centration being constant over the channel cross- 
section. Second, the proposed model does not take 
into account the effect of the discrete admixture on the 
turbulent scale. Third, the expressions for the second 
single-point moments of the discrete phase velocity 
fluctuations have been derived in the ‘local equi- 
librium’ approximation when it is assumed that the 
intensity of the pulsating motion of particles at the 
selected point in the flow is determined by the intensity 
of the liquid phase turbulent fluctuations at this very 
point. This assumption is valid for low-inertia par- 
ticles ; larger particles require their finite inertia path 
taken into account, the magnitude of which can be 
compared with the characteristic scale of variation in 
the pulsating and averaged characteristics of a tur- 
bulent flow. It should be noted that calculations made 
without the turbulent flow inhomogeneity being 
included in the expressions for the second single-point 
moments of the solid and carrier phase velocity fluc- 
tuations, equations (17) and (19) almost do not dis- 
play an increase in the hydraulic resistance on an 
increase of the admixture mass concentration even for 
small particles ; for larger particles the calculations 
give a monotonous reduction in the hydraulic resist- 
ance of the gas suspension flow on an increase of 
admixture mass-the fact which does not agree with 
the experimental data. 

6. CONCLUSIONS 

(1) Using the method of averaging over the ensem- 
ble of turbulent flow realizations, the mass and 
momentum balance equations are obtained for the 
solid phase and the flow as a whole. The equations 
show that the entrainment of particles into pulsating 
motion increases turbulent Reynolds stresses of a gas 
suspension flow. 

(2) Closed expressions are obtained for the second 
single-point moments of fluctuations of the solid and 
carrier phase characteristics in terms of the carrier 
phase velocity fluctuations with the nonuniformity 
and unsteadiness of the carrying turbulent flow taken 
into account. 

(3) Without resorting to additional constants 
associated with the presence of particles in the flow, 
hydrodynamic calculations for the gas suspension 
flow in circular tubes are made. It has been found that 
depending on the particle dynamic inertia parameter, 
the carrier phase turbulent fluctuations may increase 
(Q, << 1) or decrease (Q, > 1). The calculations 
showed the flattening of the gas averaged velocity 
profile in the presence of particles ; the non-mon- 
otonous relationship between the carrier phase tur- 
bulent viscosity and admixture mass concentration is 
investigated. Comparison of the predicted results for 
the gas suspension flow hydraulic resistance with 
experimental data for circular tubes indicates a sat- 

isfactory description of momentum transfer by a dust- 
laden flow. 
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HYDRODYNAMIQUE ET TRANSFERT THERMIQUE DES ECOULEMENTS 
TURBULENTS GAZEUX AVEC SUSPENSION DANS DES TUBES-l. HYDRODYNAMIQUE 

R&n&--Par la methode de moyenne sur l’ensemble des rbalisations d’ecoulements turbulents, on &it les 
equations du mouvement moyen et du bilan de masse pour la phase solide et pour le fluide considbres 
comme un tout. Des expressions de fermeture pour les moments de second ordre au mime point des 
fluctuations du solide et du porteur sont obtenues en fonction des correlations des fluctuations de la phase 
vectrice dans un Bcoulement turbulent non homogene. A partir de ces expressions, un systeme d’tquations 
est &it pour les moments de second ordre au m&me point des fluctuations de vitesse de la phase vectrice 
en presence des particules. Une analyse hydrodynamique est present&e pour les &coulements turbulents 
gazeux avec suspension dans des tubes. La comparaison avec des don&es exp&mentales montre une 
description satisfaisante des mt!canismes de transfert de quantite de mouvement par un &coulement charge 

de particules. 

HYDRODYNAMIK UND WARMETRANSPORT BE1 TURBULENTER STRdMUNG 
EINER GASSUSPENSION IM ROHR-1. HYDRODYNAMIK 

Zusammenfaasung-Durch das Verfahren der Ensemble-Mittelung in einer turbulenten Strijmung werden 
die Mittelwert-Gleichungen fiir Impuls- und Massenerhaltung der festen Phase und der Striimung insgesamt 
abgeleitet. Es werden geschlossene Ausdriicke fur das zentrale Moment der Flukuationen fur Feststoff 
und Trlgergas etmittelt, und zwar in Form von Korrelationen der Geschwindigkeits-Fluktuationen im 
Triigergas bei nicht-homogener turbulenter Striimung. Auf diesen Ausdriicken aufbauend, wird ein 
Gleichungssystem fiir das zweite Moment der Fluktuationen der Trlgerphasengeschwindigkeit in 
Gegenwart von Feststoffteilchen erstellt. Die turbulente Stromung einer Gassuspension im Rohr wird 
hydrodynamisch untersucht. Vergleiche mit experimentellen Daten zeigen eine zufriedenstellende 

Beschreibung des Impulstransports in einer partikelbeladenen Stromung. 

I-HLIPO~HHAMHKA H TEI-IJIOOPMEH I-IPH TYPEiYJIEHTHOM TEgEHWkI FA3OBSBECH 
B TPYEAX-1. I-H~flAHAMHKA 

~M~TOAOM ocpenaesms no anca~6nro pearra3arpdt ryp6ynetrrrroro no-roBa nonynertbi ypae- 
BeHB ocpeAneeaor0 .aBnxemrB H Ba~rarrca ~accu TBepnoft @~bl II uoroBa B ne.Bohs. Hailnermt ~ZWKHY- 

Tare =IpaxeHM Qna BTOpbor olwoTo~e¶ibIx MoMetrroB nyJmcamd4 xaparzpBcrBB TBe&VlOi H ticcpeii 

W 9epe3 roppennsas rwbcad cmpocrrr mcmeil$a3b1 B treomtopormo~ ryp6ynetrrrtoM noroBe. 
Ha ocnone noJty¶emrbrx nbrpaxernat aamtcarra CBcreMa ypasBe&l BBB BTO~B~X OIpIoTOP~ MoMen- 
roB nY_ cB0poc’t.B Becymti &%3M B npEcyrcrS&tB pBcllI9. Dp0BeBem.r pac’te’r~r rirnpon~rraxnimr 
npn Typ6YneB’tBOM TepeHHa ra3oBsBecB B Tpy6aX. CpaBHeHBB C 3K~cpEMcETiUIbH m~b~hfti CBB- 

AeTenbcTByeT 06 yAOBJrerBopETeJrBHOM OtnicllIIBB ttponeccoB neperioca tibfny~~ca aat&rnerrnbrM 
UOTOKOM. 


