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Abstract-—By the method of averaging over the ensemble of turbulent flow realizations, the averaged
motion and mass balance equations for a solid phase and a flow as a whole are derived. Closed expressions
for the second single-point moments of fluctuations of the solid and carrier characteristics are obtained in
terms of correlations of the carrier phase velocity fluctuations in a non-homogeneous turbulent flow, Based
on these expressions, a set of equations is written for the second single-point moments of the carrier phase
velocity fluctuations in the presence of particles. Hydrodynamic analysis is presented for turbulent gas
suspension flows in tubes. Comparison with experimental data shows a satisfactory description of the
processes of momentum transfer by a particle-laden flow.

1. INTRODUCTION

A Two-PHASE flow involving a solid dispersed phase
is predominantly turbulent. The explanation lies in the
fact that a laminar flow has a very limited suspension-
carrying capacity and, being laden with particles, it
exhibits a very early transition to turbulent flow {1,
2]. The theory of the turbulent disperse flow has been
worked out to a much lesser extent than the theory of
a turbulent single-phase flow. Full analysis of pub-
lications concerned with the methods for describing
and predicting turbulent disperse flows is not within
the scope of this paper; there are a variety of mono-
graphs which deal with two-phase turbulent flows and
survey relevant studies [3-7].

The particles of the admixture in a turbulent flow
can be conventionally divided into large and small
depending on their behaviour in a turbulent flow.
Large particles, the dynamic relaxation time of which
considerably exceeds the time scale of turbulence, are
practically not entrained into the carrier phase pul-
sating motion. Characteristic for these particles are
the effects of the velocity slip of phases, collision of
particles with the channel walls and with each other;
the motion of large particles is influenced by gravi-
tation and by the Magnus force ansing due to the
rotation of particles in shear flow. Large particles can
influence the pulsating structure of flow in the cases of
a perceptible velocity slip of phases, formation tur-
bulent wake behind the particles, destruction of a
viscous sublayer, etc. In the case of low averaged
velocity slips of phases (e.g. in long tubes in the
absence of gravity), the effect of large particles on the
flow characteristics is insignificant, since they are not
involved in pulsating motion, cannot therefore exert
an inverse effect upon the carrier phase and, conse-
quently, upon the characteristics of the flow as a
whole. The coarseness of the admixture particles is

determined by their relative size, by the material den-
sity ratio of the particles and carrier phase and also
by the Reynolds number of the main stream [3].

The behaviour of small particles, the dynamic relax-
ation time of which is comparable with, or smaller
than, the life of energy-carrying moles (turbulent time
scale), depends on the intensity of the pulsating
motion of the carrier phase and, in turn, determines
the influence of the admixture on the main stream
characteristics. In the case of small particles, the aver-
aged velocity slip of phases is virtually absent and,
therefore, the hydrodynamics and heat transfer of a
disperse flow can be described within the framework
of single-velocity approximation. The factors govern-
ing the behaviour of large particles are insignificant
for the analysis of the behaviour of small particles.
Important for the latter are the effects associated with
the interphase interaction in pulsating slip of phase
and with the nonuniformity of the field of the tur-
bulent carrier phase fluctuations (turbulent migration
[8, 91), and also the turbulent diffusion of an admix-
ture. In what follows the consideration will be restric-
ted to the hydrodynamics of disperse flows with an
admixture of small particles with low volume con-
centration.

The effect of particles on the intensity of momentum
and heat transfer in a turbulent disperse flow is deter-
mined by two factors: the degree with which the par-
ticles are entrained into pulsating motion of the
medium and the character of the inverse effect of the
admixture on the carrier phase velocity fluctuations.
The problem of determining the degree of the entrain-
ment of particles into the turbulent flow pulsating
motion, i.e. determining the correlation between vel-
ocity fluctuations of the particles and carrier phase
was the concern of a number of publications [3-7, 10,
11]. However, the relations obtained in these works
for the particle velocity fluctuation correlation
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a particle radius
actual and averaged volume
concentrations of solid phase

D, tensor of turbulent diffusion of
admixture particles

E turbulent energy of carrier phase,

_ (> +<ul> +<u))2

E pulsating energy of carrier phase
normalized to average velocity of
flow

Fi, F, two-time correlation functions of

velocity fluctuations of non-stationary
and stationary carrier phase flows

Jurs Juzs fuss fua  functions describing the effect
of particles on the intensity of carrier
phase turbulent fluctuations

L spatial scale of turbulence

N number of particles per flow volume

P, {P),p actual, averaged and pulsating
pressure in liquid phase, respectively

R channel radius

Re main stream Reynolds number,
2RU,, /v,

T; time macroscale of turbulence

T, time of interaction between particle and
turbulent mole

Ty characteristic time of change of

averaged quantities

U, {Up,u; actual, averaged and pulsating
velocities of carrier phase, respectively

Un average velocity of carrier phase

U averaged velocity of carrier phase
normalized to average velocity of
flow

NOMENCLATURE

Vi, {V,v; actual, averaged and pulsating
velocities of solid phase, respectively
Vo velocity of pth particles

x,%,  Cartesian coordinates

X, r longitudinal and radial coordinates of
cylindrical coordinate system

y distance from tube wall normalized to
tube radius, 1 —r.

Greek symbols

0 Dirac delta function

O Kronecker delta

& term describing interphase interaction
in equation for second single-point
moments of carrier phase velocity
fluctuations

My dynamic viscosity of the liquid phase,
Py

vy kinematic viscosity of the carrier phase

Vi, Vo turbulent kinematic viscosities of

carrier and solid phases, respectively
vy turbulent kinematic viscosity of
particle-free carrier phase

& & friction factor of gas suspension flow
and single-phase gas flow, respectively
P, p, density of carrier phase and particle

material, respectively
T, time of dynamic relaxation of particles,

(2/9) (pa/py) (@*/v))

{$> mass concentration of admixture,
p2/pKC>

) volume of particles, 4/3na’

Qy volume of flow containing N particles

Q, parameter of dynamic relaxation of

particles, z,/Tg.

moments and expressed in terms of the medium vel-
ocity fluctuation moments are valid only for steady-
state homogeneous turbulence.

The problem of the inverse influence of particles
on the carrier phase velocity fluctuations was also
discussed in many publications. Most of the inves-
tigations revealed a reduction in the flow turbulence
on introduction of fine particles. Thus, based on the
energy or momentum balance between a turbulent
mole and particles, the authors of refs. [12, 13] derived
simple equations showing a decrease in the intensity
of medium velocity fluctuations with an increase in
the admixture weight concentration. In ref. [14], the
reduction of the turbulent flow hydraulic resistance in
the presence of particles is explained with the aid of a
model based on complete suppression of vortices the
scale of which is smaller than the size of particles.
Additional dissipation of turbulence energy as a result
of incomplete entrainment of particles in pulsating
motion of the medium is determined in refs. [15, 16].

The degree of reduction in the carrier phase fluc-
tuation intensity owing to additional turbulent energy
dissipation induced by pulsating slip is estimated in
refs. [7, 17] on the basis of the turbulence energy
balance equation. In contrast to refs. {7, 12-17], it is
assumed in ref. [18] on the basis of the experimental
data of ref. {19], that along with dissipation of tur-
bulent energy, the particles contribute to the gen-
eration of turbulence due to their entrainment into
pulsating motion. The latter is also confirmed by
investigations of the stability of laminar flows carrying
solid disperse admixtures [2, 20] which reveal that
particles not only lead to the degradation of high-
frequency disturbances, but also cause the growth of
low-frequency (most energy-intensive) impulses
because of an increase in the origination of dis-
turbances from averaged motion. Thus, the question
of the effect of fine particles on the pulsating charac-
teristics of a turbulent shear flow has not been
resolved.
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To calculate the hydrodynamics of disperse flows,
various models of turbulent transfer are used within
the framework of which the influence of particles on
turbulence is taken into account, as, for instance, the
Prandtl model in ref. [12] and different modifications
of the van Driest models in refs. [7, 18]. However, the
most considerable promise is offered by models which
are based on equations for second single-point
moments of velocity fluctuations because they provide
the possibility to most consecutively take into account
the effect of particles on turbulence. This approach
was used for the first time in ref. [21] to analyse the
effect of heavy inertia-free particles on a horizontal
turbulent flow. Subsequently the second moment
equations were used to calculate a turbulent disperse
flow in channels [17] and in jets {22, 23]. However,
the main attention in these studies was paid to the
dissipative influence of a discrete admixture on tur-
bulence. The authors of ref. [17] discarded the terms
involving the solid phase velocity fluctuations, thus
considerably overstating the additional liquid-phase
turbulent energy dissipation due to pulsating slip,
while the authors of refs. [22, 23] achieved closure
through the set of equations for the second single-
point moments of solid and carrier phase velocity
fluctuations which were derived for single-phase
steady-state turbulence. This solution of the closure
problem does not take a full account of the influence
of admixture on the pulsating structure of flow.

In the present study, using the method of averaging
over the ensemble of turbulent flow realizations,
expressions for the second single-point moments of
fluctuations of the solid and carrier phase charac-
teristics in a non-uniform turbulent flow were found
from the equation of motion of a single-solid particle.
Based on these expressions, a set of equations was
derived for the second single-point moments of the
carrier phase velocity fluctuations in the presence of
a particle to calculate the hydrodynamics of gas sus-
pension flows in tubes. The calculations neglected a
change in the space scale of the carrier phase tur-
bulence in the presence of particles. The modelling of
the discrete admixture effect on the spatial pulsatory
structure of a carrying flow is the purpose of further
investigations.

2. AVERAGED MASS AND MOMENTUM BAL-
ANCE EQUATIONS FOR THE SOLID PHASE AND
GAS SUSPENSION FLOW AS A WHOLE

The following restrictions are imposed on a two-
phase system ‘gas—particles’: (1) the volume con-
centration of the admixture is so insignificant that the
collision of particles with each other may be
neglected; (2) the discrete phase is represented by
solid non-deformable equally sized particles; (3) the
Reynolds number based on the particle radius and
flow fluctuational velocity is smaller than unity; (4)
the gravity force is ignored which is justifiable at flow
velocities much in excess of the free-fall velocity of
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particles; (5) the particles are assumed to be so small
that the effects stemming from the rotation of particles
could be neglected ; (6) the collisions of particles with
the channel wall and with each other are not taken
into account.

Since the solid particles suspended in a turbulent
gas flow are smali (p, » p,, R/a ~ 10%), it is possible
to regard them as pin-point particles and to describe
the distribution of particles in the flow volume by the
function

Clx, 1) = Q% % 8= Ry(0). )

The solid phase velocity in Euler’s notation is
) N
Vi, DCx, 1) = == 3. 3(x—=R,(V,u()  (2)
Qv, <

dR,()
BT V(D). 3)

Differentiating equation (1) with respect to time
and using equations (2) and (3) gives the solid phase
mass balance equation

oc 0
i + T V C=0. 4)
In Stokes’ approximation, the equation of single
particle motion is

v, 1
dr _,z_u(Ui(Rp(t)at)_th)' (S)

By imposing the approximation of point particles,
the equation of motion for the carrier phase laden
with particles can be written in the form

ou, U, _ _10P QU

ot " %ax, = T p, ox, ' oxeox,
p, 0w X dv,
222 Y 5x—RM) 2. (6
oy 10RO ©

From the quantities that characterize the motion of
the carrier phase, separate the averaged and fluc-
tuational one (the averaging is carried out over the
turbulent flow realizations)

Ui(xa t) = <Ui(xs t))+u,~(x, t)’ <ui(x’ t)> = 0
P(x,0) = (P(x, 1)) +p(x, 1), {p(x, 1)) = 0.

The averaging of equations (1) and (2) over the
turbulent flow realizations yields the averaged volume
concentration and velocity of the solid phase

(Clx, 1> = <§N ;a(x—R,,(z)>>

Cx, 0)5Vikx, 1)) = <Q% > 5(x—R,,(t))Vp.-(t)>-

p=1
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The fluctuational solid phase velocity component is
determined from the relation

Vilx, 1) = {Vix, 0 +vi(x, 1)
so that the following equality is satisfied :
C(x, Dvx,0)> = 0. M

The averaging of equation (4) with regard for equa-
tion (7) results in the solid phase mass balance equa-
tion

e

K24 oo =0, ®

Similarly, equations (5), (7) and (8) yield the solid
phase motion equation

KV KV Ko
<c>< +rp %l ) ~o%e
<uo“0+ e @ ©

The first term on the right-hand side of equation
(9) accounts for the contribution of particles into the
solid phase momentum transfer due to their entrain-
ment into pulsating motion, which corresponds to the
appearance of turbulent viscosity in this phase; the
second term determines the diffusion force arising due
to the concentration gradient ; the last two terms relate
directly to the interphase interaction.

By averaging equation (6) and adding it to equation
(9), the momentum balance equation for the flow as
a whole is obtained as

oV,

5<U> (Uk)a<U> Pz<C><< >
a<V> 1 XP) KU
+<{V> )— 0, o, +6_xk|:"1”’—axk

+wmwfko@mﬂ.am

It is seen from equation (10) that the particles con-
tribute not only to averaged convective transfer of
momentum, but also to the turbulent stresses of the
flow as a result of their entrainment into puisating
motion.

3. EQUATIONS FOR THE SECOND MOMENTS
OF VELOCITY FLUCTUATIONS OF THE CARRIER
PHASE LADEN WITH PARTICLES

Equations for the second single-point moments of
the carrier phase velocity fluctuations in the presence
of particles result from equation (6) and coincide
with respective equations for a single-phase flow,
except for the additional term which is associated with
the interphase interaction and which has the form
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ZMme)

Np=1

av,, v,
x | gl w0+~ . D

Substituting the single particle motion equation (5)
and equation (11), obtain after averaging

w _ P2 <C>
P4

=

g =
/ P1<

;0 = <u;)]

p2 1
+ 0 a[(cuﬁ((Uj)—(Vj))
+<{Cu KU =<V (12

Equation (12) contains the single-point correlations
of solid and liquid phase velocity fluctuations and also
the correlations of the carrier phase velocity fluc-
tuations and of particle concentration. Moreover, the
second moments of solid phase velocity fluctuations
are incorporated in the motion equations for the solid
phase and for the flow as a whole. Therefore, the
objective arises to express the second single-point
moments of the fluctuations of solid and carrier phase
characteristics in a non-uniform turbulent flow in
terms of the correlations of velocity fluctuations of
the carrier phase alone.

Assume that the intensity of the solid phase pul-
sating motion is primarily determined by the force of
resistance arising during the fluctuation slip of phases ;
then the equation for solid phase velocity fluctuations
will take the form

v, o, oKV
N +<Vk>ﬁ + 0 “"_axk

plom—om) L,

O0xy T,

(13)

At a zero initial velocity of the particle, equation
(13) can be presented in the integral form as

1{f t—s
v,(x,t)=_c—£exp<— . ){ui(x,s)

v, (x )]

|:< Vi(x,8)>

+0,(x,5) KVilx ) Vé(;’ )

L0
0x;

v;(x, s)oilx, )

— (v(x, )ve(x, s)>]} ds (14)

Calculate the second single-point moment of the
solid and carrier phase velocity fluctuations. Mul-
tiplying equation (14) by w(x,?), averaging and
employing the substitution of variables in the integral,
obtain
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<uj (x7 t)vi(xa t)>

= l-r exp (— §> {(u,(x, t—s)u(x, 1>
Tu Jo Ty
[<Vk(x - s)><u ) a—”—(’”—)>

+ <6, Do, t—)) &gxk’i@
<u (x,t) 0 v(x,t S (x, t— s)>]}ds. (15)

Determine the correlation moment of the carrier
phase velocity fluctuations

e =sY e, ) = Fi—s12.5) = F(1,9
RN SO

0
— R0 5 o Dy, 0> (16)

where F,(s) is the two-time correlation function of the
carrier phase velocity fluctuations. The value of Fj;
changes significantly when the first argument is
changed by the value of the order of T,, and the
second argument is changed by the value of the order
of Ty, where T, is the characteristic time for the vari-
ation of averaged parameters, T is the time macro-
scale of turbulence (the life of an energy-carrying
mole). It is assumed in what follows that T, « T,
and, consequently, the first and second arguments in
F;; are the slow and fast variables, respectively. It is
this fact which allowed the restriction to the first term
in the expansion of F}; in the second argument (16).
It follows from equatlon (15) that the ratio of the
first term within braces to the terms describing con-
vective and diffusive transfer [to the first and second
bracketed terms in equation (15)] is proportional to
7,/ To. Then, imposing the condition /T, « 1 [and,
consequently, considering the cases 7,/T; = O(1)], it
is possible to confine the discussion to the first terms
in equations (16) and (15) when calculating the con-
vective and diffusive terms between the brackets in
equation (15). Relevant calculations in equation (15)
yield a closed relation for the second single-point
moment of solid and carrier phase velocity fluc-
tuations accurate to the terms of the order of (1,/T,)?
expressed in terms of velocity fluctuation moments of

the carrier phase alone
ey

(ui(x, t)”j(xa ny= Ll(uiuj>
I7 Ou;u;,
+ {uae> < J> +<u,~ g;: >) an

. fuz( 3<uuk>
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where the coefficients f,, and f,, characterize the
degree with which the particles are entrained into
pulsating motion. They are determined by the for-

mulae
= —1 X - ——'S F, (S) ds
.f;l 7, Jo € P 7, u

1[|* s
S = EJ; § eXp <— I—)F,,(s) ds.

Similarly, the second single-point moment of the
discrete phase velocity fluctuations is expressed,
accurate to the terms of order (t,/T,)?, in terms of the
carrier phase moments

{vi(x, t)vj(x’ 19); =ﬁ1<“i“j>
ouu;y

18)

2Tu(ﬂ41 + fu2) (

6<uu>

0 v
I A i S

<lk>

+<1k>

a<V> 6<uuuk)) 19)

0xk

The first terms in expressions (17) and (19) describe
the entrainment of particles into the pulsating motion
of the carrier phase in a steady-state uniform turbulent
flow [7, 10, 11] whereas the subsequent terms are
linked with the nonuniformity and nonsteadiness of
the turbulent flow. It follows from equations (17) and
(19) for low-inertia particles (z,—0) that {up;> -
{vw;»> = {uu;), i.e. the particle fluctuations coincide
with the fluctuations of the carrier phase. For inertia
particles {up;» = 0, but {vv;) = O(1,/T,) because of
the additional generation of solid phase fluctuations
due to the nonuniformity of the carrying turbulent
flow.

With the single-point moments and two-time func-
tions of the carrier phase velocity and temperature
fluctuations being known, equations (17)—(19) make it
possible to calculate the second single-point moments
that include discrete phase velocity and temperature
fluctuations in a non-stationary non-uniform tur-
bulent flow.

Equations (15) and (16) yield an expression for the
two-time correlation of the solid and carrier phase
velocity fluctuations accurate to the terms of the order

of
s
exp o

x J exp(—§>pu(¢)d¢. (20)

The solid phase motion equation (9) and expression
(12) include the correlation between the solid phase

Cuil(x, t)vj(x’ t+s)) =
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concentration and the liquid phase velocity fluc-
tuations. To calculate this correlation, write the par-
ticle concentration balance equation (4) in integral
form, multiply it by wu,(x,#) and average over the
ensemble of turbulent realizations; then, neglecting
the terms proportional to the second and high-order
derivatives of the averaged concentration, obtain the
following expression :
(C(x, Hulx, )

4

= —f {a(x, Hoe(x, ) dsaj%’ﬁz'
0 Xx

With equation (20) taken into account, obtain

(Clx, Hux, 1)y = — < >

Tufur () @n

where

Sz = %J:o [l —exXp (— ;s:)jl F,(s)ds.

Using equation (21), write down the solid phase
motion equation (9) in the following form:

KED |y 0 5080
Xk
1
= L= - 102 oy
where

Dy = (fur + fu3)t.Suney = J; F,(s) dsCuta>

is the turbulent diffusion coefficient of admixture par-
ticles. Taking into account the interphase interaction
term in equation (12), in which the correlation
moments can be found from formulae (17) and (21),
the equations for the second single-point moments of
the carrier phase velocity fluctuations in the presence
of particles will have the form

<1+f.,2<c>“’ 2)““” (<Uk>

Ouuy

+ <C>f;2<Vk>)

U, o2 X
PO fa g

6<V>)

+ <u1uk> (

+ () =L fr

(‘7<U> P2
0x; 0x

(152w

3 up) a<u,p>} < (au.
"'*Z 6x + ax, o1 \0x;
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Ou; * uuyy 6u, 6uj
+ 6xi)> g, 2 \Gx, ox,

; KC
228 o K> KU~V
U=V )]
—2% 2 (o) 23)
where
T,
fua =T_(l"ﬂa1)- (24)

As is seen from e¢quation (23), the particles being
entrained into the carrier phase pulsating motion con-
tribute to the terms that determine the convective
transfer and turbulent diffusion of liquid phase fluc-
tuations and also the origination of fluctuations from
the averaged motion; moreover, new terms appear
that describe variations in pulsating energy due to the
admixture concentration gradient {the last but one
term in equation (23)] and additional dissipation of
the carrier phase pulsating energy by particles (the
last term).

In the case of inertia-free particles (t, —» 0, f,, - 1,
Ju2 = 1, fus— 0) equations (23) for particles of con-
stant concentration transform into equations for the
second single-point moments of the fluctuations of a
single-phase liguid having the density p,(14p4/
£:1£{C>). Inertia particles (1, > T) are less entrained
into pulsating motion (f,; <1, f.. <1, f..#0)
and, as a result, the carrier phase turbulent energy
may decrease. Large particles (¢, » Tz) are not en-
trained into pulsating motion and therefore f,;, f.,,

Jua= 0.

4. EQUATIONS FOR THE HYDRODYNAMICS OF
TURBULENT GAS SUSPENSION FLOWS IN
TUBES

To calculate the functions that describe the degree
of the entrainment of particles into the carrier phase
pulsating motion, it is necessary to determine the two-
time correlation function of the carrier phase velocity
fluctuations. To simplify the subsequent calculations,
assume the function F,(s) to have the following

form:
, if 0<s<T,
F,(5) = {1 ! sS4

0, if s>7, (25)

Here T, is the time of particle interaction with the
turbulent field which is shorter than the life of energy-
carrying vortices (turbulence time scale) because of
the averaged and pulsating slip of the phases. By
neglecting a decrease in 7, as compared with the life-
time of a turbulence mole, it is possible to assume in
what follows that T, = T;. Thus, the main quantity
which determines the degree of the entrainment of
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FiG. 1. Entrainment and dissipation coefficients vs the
dynamic inertia parameter: 1, equations (18) and (24); 2,

(1+Q)"" [23].

particles into turbulent motion is the particle dynamic
inertia parameter Q, = 1,/7%.

Equations (18), (21) and (25) give expressions for
the functions that describe the effect of particles on
the turbulent structure of the carrying flow

Jur = 1—exp (~1/8,)
Jor=1-(1+1/Q)exp (—1/Q,)
Jus = 1/, +1—exp(-1/Q)
Jus = exp (= 1/Q,)/Q,.

Figure 1 presents the coefficients of entrainment
fu1» fu2 and dissipation f, vs the inertia parameter
Q, plotted from formulae (26). It follows from these
formulae that f,,, f,,— 1 and f,;, — 0 when Q,— 0,
because the inertia-free particles are fully entrained
into pulsating motion; f,,, f.,, fus— 0 for Q, — oo,
because large particles are not entrained into pulsating
motion. Figure 1 also contains the relation for the
dissipation coefficient f,,= (1+Q,)""' [7, 23]
obtained with the use of the correlation function
F, = exp (—s/Tg) which does not satisfy the condition
(dF,/ds), . o = 0—a fact which results in the condition
J.s — 0to be also invalid for Q, — 0 (of the inertia-free
particles completely entrained into pulsating motion
there should be no additional dissipation due to the
pulsating slip of the energy-carrying moles of the car-
rier and solid phases). On the contrary, the relation
for the dissipation coefficient f,, ~ Q, for Q, < 1 and
fua ~ const. for Q, > 1 [11] tends to zero when Q, —
0, but it does not satisfy the limiting transition when
Q, — oo (large particles are not entrained into pul-
sating motion and, consequently, there should not be
additional dissipation by them either). The dissipation
coefficient f,, determined from formula (26) attains
the maximum value at Q, = 1, i.e. the turbulent energy
dissipation due to the interphase pulsating slip reaches
the maximum when the times of the particle relaxation
and energy-carrying mole life coincide.

To describe the dissipation and transfer terms in

(26)
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equations (24) for the second single-point moments
of velocity fluctuations of the particle-laden carrier
phase, use is made of Rotta’s approximation hypoth-
eses [25]

ou; 0w\ _cp E? cre (U
v‘<axk 5—xk>_?T6U+ 3 12
P {ou {}uj EV? ,
~\o oy =k —— (Cuay)—3E5,). (27
<p|<¢?xj+axi)> kl L (<uluj> 3 5,1) ( )

The turbulence time scale (the lifetime of energy-
carrying fluctuations) incorporated into the definition
of the dynamic inertia parameter of particles is cal-
culated from the formula T = yL/E">. The constant
y is estimated from the condition of equality of the
mole turbulent energy E to the turbulent dissipation of
pulsating energy for the time Ty, i.e. E = czE¥*/LTy,
which results in y = 1/cg.

In ref. [26], a qualitative investigation is made into

the effect of particles on the intensity of turbulent
transfer of the gas suspension flow momentum. For
large turbulent Reynolds numbers Rey = LEY?/v,
» 1 an algebraic set of equations is obtained in a
diffusion-free approximation for the second single-
point moments of particle-laden carrier gas velocity
fluctuations, which yielded the expressions for the
turbulent energy and carrier phase shear stress in the
form of modified Prandtl numbers. The analysis
of these expressions shows that inertia particles
(Q, ~ 1) cause a decrease in both the intensity of
the turbulent fluctuations of gas due to the forces
of resistance in the pulsating slip of phases. As
the dynamic inertia parameter of particles increases
(Q, > 1), the effect of the admixture on the pulsating
structure diminishes. With an increase in the weight
concentration the low-inertia particles intensify the
momentum turbulent transfer due to the participation
of particles in the pulsating motion of the carrier
phase and to the growth of the terms that describe the
origination of gas turbulent fluctuations from aver-
aged motion in the presence of particles.

Numerical calculation of the hydrodynamics of gas
suspension flows in circular tubes is carried out with
coinciding averaged velocities of the solid and carrier
phases for constant concentration of the admixture
over the tube cross-section. Use is made of the
momentum balance equation for gas suspension flow
in the axial direction

1xp 10
p, 0x  ror

forrona®2l e

and the balance equation for the carrier phase
pulsating energy in which the following gradient
representation is employed for the terms describing
turbulent diffusion:
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The turbulent viscosity of the solid phase is deter-
mined from equation (19) in terms of the turbulent
kinematic viscosity of the carrier phase as

_ <vay> _ - Qu(f;IZ +f;41)
sz—‘“a<U>/ay—-anu1[:l+ 260

1 +2<¢>fu4/(k1v)]
—1. (30

ko> | O
The turbulent viscosity of the liquid phase is deter-

mined from the set of equations (23) in diffusion-free
approximation with the use of Rotta’s relations (27)

xkyy
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The turbulent macroscale L is identified with the
Nikuradze mixing length

L = 0.14—0.087> —0.06r*.

Numerical values of the constants «,, §, k,, cz and
¢z are selected from the solution to the problem of
a near-wall single-phase liquid flow [27]: a;, = 0.51,
B =14,k =116, cy = 0.13, cx; = 0.32. The bound-
ary conditions for the set of equations (28)—(31) take
the form

E=U)=0, if r=R;
Uy OGE . _
Fraaly mh 0, if r=0. (32)

The set of equations (28)—(31) with boundary con-
ditions (32) are solved numerically.

5. CALCULATION RESULTS

The admixture of solid particles considerably
changes the intensity of the carrier phase pulsating
motion. Figure 2 illustrates the distribution of the gas
turbulent energy intensity. It is seen that the admix-
ture of solid particles can both increase the intensity
of gas turbulent fluctuations, because of the growth
of fluctuations from the averaged motion when the
particles become entrained into turbulent motion, and
decrease the level of turbulent fluctuations of gas
through the work done by the carrier phase to entrain
the admixture mass into pulsating motion. The degree
of the effect of particles on the gas fluctuation struc-
ture depends nonmonotonously on the particle
dynamic inertia parameter as is seen from Fig. 3 where
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FiG. 2. Effect of particles on the pulsating energy of the

carrying gas (Re=53x10%: 1, {¢>=0; 2, (> =35,

Rja=130000; 3, <{¢>=15, R/a=5000; 4, {¢$>=35,
Rja =3000; 5, {¢)> =5, Rfa = 1000.

the distribution of the gas pulsating energy in the near-
wall region is shown. A maximum reduction in the
gas pulsating energy is achieved when the dynamic
inertia parameter is about unity. The particle dynamic
inertia parameter changes across the channel; it
attains its maximum near the channel wall where the
frequency of turbulent fluctuations is a maximum.
Closer to the flow core the dynamic inertia parameter
decreases. It should be noted that when the admixture
mass concentration increases, the carrier phase tur-
bulent flow adjusts itself so as to diminish the effect
of admixture on the fluctuation structure of the flow;
the dynamic inertia parameter of low-inertia particles
(Q, « 1) increases with the admixture concentration,
decreasing the degree of the additional growth of fluc-
tuations from averaged motion and increasing the
pulsating slip of phases, while the inertia parameter
of larger particles (Q, > 1) decreases in a flow with a
higher concentration of the admixture resulting in a
smaller additional dissipation of the gas turbulent

Q.14
o.12
a1l

E” 008
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/,

Fic. 3. Effect of discrete phase on the fluctuation structure

of gas near the wall (Re = 5.3x10%. For notation, see
Fig. 2.
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Fi1G. 4. Variation of the admixture particle inertia parameter

over the tube cross-section (Re =53x10%: 1, {(¢)> =0,

Rla=10000; 2, {¢>=5, R/a=10000; 3, (¢>=0,

Rja=5000; 4, {($>=35, R/a=5000; 5 <(¢>=0,

Rja=3000; 6, <¢>=5 Ra=3000; 7, <{¢>=0,
Rja = 1000; 8, {(¢> = 5, R/a = 1000.

energy and in a more intensive generation of the car-
rier phase fluctuations (Fig. 4).

The turbulent viscosity of gas, just as its pulsating
energy, depend on the mass concentration of the
admixture. Low-inertia particles (Q, « 1) increase the
turbulent viscosity of gas. On the other hand, in the
presence of inertia particles (, > 1) a reduction in
the carrier phase turbulent viscosity is observed
K¢> < 5), followed by an increase of turbulent vis-
cosity with the admixture concentration (Fig. 5). The
non-monotonous behaviour of v,, caused by the
admixture mass concentration is supported by exper-
imental data presented in ref. [3].

The particles exert an influence not only on the
fluctuation structure of a flow, but also change the
profile of the averaged velocity of the carrier phase
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FiG. 5. Effect of particles on the kinematic viscosity of gas
(Re=53x10%: 1, R/a=30000; 2, R/a=S5000; 3,
R/a = 300; 4, R/a = 1600.
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Fi1G. 6. Effect of discrete phase on the gas averaged velocity
profile (Re=53x10%: 1, (¢>=0; 2, (¢$>=3,
Rja =30000; 3, R/fa = 5000; 4, {¢> =3, R/a =30000; §,
{¢)> =3, R/a = 1000.

(Fig. 6). Addition of fine particles flattens the profile
of the gas averaged velocity. As the particle dynamic
inertia parameter Q, increases, the effect of particles
on the averaged velocity profile diminishes and this is
supported by experimental investigations of the gas
averaged velocity profile in a gas suspension flow [28].

Figure 7 gives a comparison between experimental
[19] and calculated relations for the hydraulic resist-
ance of an air flow laden with zinc particles of different
sizes. There is a good agreement between the exper-
imental data and the predicted results, especially for
fine particles. In the case of larger particles, there is
no reduction in the hydraulic resistance with an
increase in the admixture mass concentration. This
discrepancy between the prediction and experiment

0 l
0! 10° 10!

FiG. 7. Hydraulic resistance of gas suspension flow in a
circular tube (Re=53x10%: 1, R/a=30000; 2,
R/a = 5000; 3, R/a = 3400; 4, R/a = 1700.
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can be attributed to several reasons. First, the cal-
culations were carried out for the particle con-
centration being constant over the channel cross-
section. Second, the proposed model does not take
into account the effect of the discrete admixture on the
turbulent scale. Third, the expressions for the second
single-point moments of the discrete phase velocity
fluctuations have been derived in the ‘local equi-
librium’ approximation when it is assumed that the
intensity of the pulsating motion of particles at the
selected point in the flow is determined by the intensity
of the liquid phase turbulent fluctuations at this very
point. This assumption is valid for low-inertia par-
ticles ; larger particles require their finite inertia path
taken into account, the magnitude of which can be
compared with the characteristic scale of variation in
the pulsating and averaged characteristics of a tur-
bulent flow. It should be noted that calculations made
without the turbulent flow inhomogeneity being
included in the expressions for the second single-point
moments of the solid and carrier phase velocity fluc-
tuations, equations (17) and (19), almost do not dis-
play an increase in the hydraulic resistance on an
increase of the admixture mass concentration even for
small particles; for larger particles the calculations
give 2 monotonous reduction in the hydraulic resist-
ance of the gas suspension flow on an increase of
admixture mass—the fact which does not agree with
the experimental data.

6. CONCLUSIONS

(1) Using the method of averaging over the ensem-
ble of turbulent flow realizations, the mass and
momentum balance equations are obtained for the
solid phase and the flow as a whole. The equations
show that the entrainment of particles into pulsating
motion increases turbulent Reynolds stresses of a gas
suspension flow.

(2) Closed expressions are obtained for the second
single-point moments of fluctuations of the solid and
carrier phase characteristics in terms of the carrier
phase velocity fluctuations with the nonuniformity
and unsteadiness of the carrying turbulent flow taken
into account.

(3) Without resorting to additional constants
associated with the presence of particles in the flow,
hydrodynamic calculations for the gas suspension
flow in circular tubes are made. It has been found that
depending on the particle dynamic inertia parameter,
the carrier phase turbulent fluctuations may increase
(Q,«< 1) or decrease (Q,>1). The calculations
showed the flattening of the gas averaged velocity
profile in the presence of particles; the non-mon-
otonous relationship between the carrier phase tur-
bulent viscosity and admixture mass concentration is
investigated. Comparison of the predicted results for
the gas suspension flow hydraulic resistance with
experimental data for circular tubes indicates a sat-

I. V. DEREVICH et al.

isfactory description of momentum transfer by a dust-
laden flow.
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HYDRODYNAMIQUE ET TRANSFERT THERMIQUE DES ECOULEMENTS
TURBULENTS GAZEUX AVEC SUSPENSION DANS DES TUBES—1. HYDRODYNAMIQUE

Résumé—Par la méthode de moyenne sur ’ensemble des réalisations d’écoulements turbulents, on écrit les
équations du mouvement moyen et du bilan de masse pour la phase solide et pour le fluide considérés
comme un tout. Des expressions de fermeture pour les moments de second ordre au méme point des
fluctuations du solide et du porteur sont obtenues en fonction des corrélations des fluctuations de la phase
vectrice dans un écoulement turbulent non homogéne. A partir de ces expressions, un systéme d’équations
est écrit pour les moments de second ordre au méme point des fluctuations de vitesse de la phase vectrice
en présence des particules. Une analyse hydrodynamique est présentée pour les écoulements turbulents
gazeux avec suspension dans des tubes. La comparaison avec des données expérimentales montre une
description satisfaisante des mécanismes de transfert de quantité de mouvement par un écoulement chargé
de particules.

HYDRODYNAMIK UND WARMETRANSPORT BEI TURBULENTER STROMUNG
EINER GASSUSPENSION IM ROHR—1. HYDRODYNAMIK

Zusammenfassung—Durch das Verfahren der Ensemble-Mittelung in einer turbulenten Strémung werden
die Mittelwert-Gleichungen fiir Impuls- und Massenerhaltung der festen Phase und der Strémung insgesamt
abgeleitet. Es werden geschlossene Ausdriicke fiir das zentrale Moment der Flukuationen fiir Feststoff
und Trigergas ermittelt, und zwar in Form von Korrelationen der Geschwindigkeits-Fluktuationen im
Trigergas bei nicht-homogener turbulenter Stromung. Auf diesen Ausdriicken aufbauend, wird ein
Gleichungssystem fiir das zweite Moment der Fluktuationen der Trigerphasengeschwindigkeit in
Gegenwart von Feststoffteilchen erstellt. Die turbulente Strémung einer Gassuspension im Rohr wird
hydrodynamisch untersucht. Vergleiche mit experimentellen Daten zeigen eine zufriedenstellende
Beschreibung des Impulstransports in einer partikelbeladenen Strémung.

THAPOAUHAMHUKA H TEIIJIOOBMEH IMPHU TYPBYJEHTHOM TEYEHHH I'A30B3BECU
B TPYBAX—1. THAPOOJUHAMHKA

AmsoTamms—MeTo0M OCpeRHEHHs 0 aHCaMOMo peasm3anuil TYpSyJIeHTHOro OTOKA MOJTyYeHB! YpaB-
HEHHsl OCPEHEHHOro JBAXCHAA H Gasanca Maccul TBepaolt dasnl u noToxa B nenom. Halinens 3aMxny-
Thi€ BHIPAXEHHEA IS BTOPHIX OQHOTOYCTHBIX MOMEHTOB My/IbCAlHi XapaKTEPHCTHK TBEPAOH H Hecyeit
¢a3 uepe3 xoppeNANRHE Hy/LCAIAA CKOPOCTH Hecylneli $a3s B HEOZHOPOZHOM TYpOYJIEHRTHOM MOTOKE.
Ha ocHOBe MOJTyHeHHEIX BHIDAXCHHI 3aIHCaHa CHCTEMA YPaBHEHHIA VIR BTOPHLIX OMHOTOTETHLIX MOMCH-
TOB IyJIbCaNMil CKOPOCTH Hecymmeit Gassl B NpECYTCTBHE YacTanl. IIpoBeseHH pacyeThi TRAPOAHHAMHEEKH
OpH TypOyJIeHTHOM TEYCHHH ra3oB3BecH B Tpybax. CpaBHCHHE ¢ 3KCIEPHMCEHTANLHLIMH JAHHBIMH CBH-
AETENLCTBYET 00 YHOBJNETBODHTENLHOM OIMCAHHE MPOLECCOB MEPEHOCA HMIYILCA 3aNBUICHHBIM
MOTOKOM.



